272 research outputs found

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure

    Target Contrastive Pessimistic Discriminant Analysis

    Full text link
    Domain-adaptive classifiers learn from a source domain and aim to generalize to a target domain. If the classifier's assumptions on the relationship between domains (e.g. covariate shift) are valid, then it will usually outperform a non-adaptive source classifier. Unfortunately, it can perform substantially worse when its assumptions are invalid. Validating these assumptions requires labeled target samples, which are usually not available. We argue that, in order to make domain-adaptive classifiers more practical, it is necessary to focus on robust methods; robust in the sense that the model still achieves a particular level of performance without making strong assumptions on the relationship between domains. With this objective in mind, we formulate a conservative parameter estimator that only deviates from the source classifier when a lower or equal risk is guaranteed for all possible labellings of the given target samples. We derive the corresponding estimator for a discriminant analysis model, and show that its risk is actually strictly smaller than that of the source classifier. Experiments indicate that our classifier outperforms state-of-the-art classifiers for geographically biased samples.Comment: 9 pages, no figures, 2 tables. arXiv admin note: substantial text overlap with arXiv:1706.0808

    Effects of sampling skewness of the importance-weighted risk estimator on model selection

    Full text link
    Importance-weighting is a popular and well-researched technique for dealing with sample selection bias and covariate shift. It has desirable characteristics such as unbiasedness, consistency and low computational complexity. However, weighting can have a detrimental effect on an estimator as well. In this work, we empirically show that the sampling distribution of an importance-weighted estimator can be skewed. For sample selection bias settings, and for small sample sizes, the importance-weighted risk estimator produces overestimates for datasets in the body of the sampling distribution, i.e. the majority of cases, and large underestimates for data sets in the tail of the sampling distribution. These over- and underestimates of the risk lead to suboptimal regularization parameters when used for importance-weighted validation.Comment: Conference paper, 6 pages, 5 figure

    On Regularization Parameter Estimation under Covariate Shift

    Full text link
    This paper identifies a problem with the usual procedure for L2-regularization parameter estimation in a domain adaptation setting. In such a setting, there are differences between the distributions generating the training data (source domain) and the test data (target domain). The usual cross-validation procedure requires validation data, which can not be obtained from the unlabeled target data. The problem is that if one decides to use source validation data, the regularization parameter is underestimated. One possible solution is to scale the source validation data through importance weighting, but we show that this correction is not sufficient. We conclude the paper with an empirical analysis of the effect of several importance weight estimators on the estimation of the regularization parameter.Comment: 6 pages, 2 figures, 2 tables. Accepted to ICPR 201

    On Classification with Bags, Groups and Sets

    Full text link
    Many classification problems can be difficult to formulate directly in terms of the traditional supervised setting, where both training and test samples are individual feature vectors. There are cases in which samples are better described by sets of feature vectors, that labels are only available for sets rather than individual samples, or, if individual labels are available, that these are not independent. To better deal with such problems, several extensions of supervised learning have been proposed, where either training and/or test objects are sets of feature vectors. However, having been proposed rather independently of each other, their mutual similarities and differences have hitherto not been mapped out. In this work, we provide an overview of such learning scenarios, propose a taxonomy to illustrate the relationships between them, and discuss directions for further research in these areas

    Dissimilarity-based Ensembles for Multiple Instance Learning

    Get PDF
    In multiple instance learning, objects are sets (bags) of feature vectors (instances) rather than individual feature vectors. In this paper we address the problem of how these bags can best be represented. Two standard approaches are to use (dis)similarities between bags and prototype bags, or between bags and prototype instances. The first approach results in a relatively low-dimensional representation determined by the number of training bags, while the second approach results in a relatively high-dimensional representation, determined by the total number of instances in the training set. In this paper a third, intermediate approach is proposed, which links the two approaches and combines their strengths. Our classifier is inspired by a random subspace ensemble, and considers subspaces of the dissimilarity space, defined by subsets of instances, as prototypes. We provide guidelines for using such an ensemble, and show state-of-the-art performances on a range of multiple instance learning problems.Comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems, Special Issue on Learning in Non-(geo)metric Space
    corecore